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Stress relaxation in bending of type AISI 304 
stainless steel at 773 and 823 K 
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Stress relaxation measurements at 773 and 823 K in bending and for different initial stresses in 
type AISI 304 stainless steel are reported. Several thermal treatments were given to the 
specimens prior to the relaxation testing. The data are fitted to a general equation that 
describes thermally activated dislocation motion and it is shown that, in some cases, the 
internal stress changes with the applied stress. No substantial differences were found in the 
stress relaxation behaviour on changing the thermal treatment. This is attributed to the 
influence of dynamic strain ageing; an equation which can be used to describe experimental 
log stress against log strain rate curves is presented. 

I .  Introduction 
Only limited data are available in the literature on the 
stress relaxation behaviour of stainless steels. Conway 
et al. [1] have reviewed the stress relaxation behaviour 
of stainless steels for data analysed in a stress against 
time diagram. Rhode and Swearengen [2] considered 
the load relaxation data reported by Conway [31, for 
304 and 316 stainless steels during cyclic deformation 
and various holding times, for experiments conducted 
at 923 and 811 K. The stress relaxation curves were 
analysed in a stress against strain-rate diagram by 
using the relationship 

~/~l = (1 - s ) [ (o  - ~i)/~1] m/" 

+ s[(cy - cyi)/cra]" (1) 

where cy is the applied stress, ~ the plastic strain rate, m 
is a state variable that relates dislocation velocity to 
stress, n is a state variable that denotes the recovery 
rate, the state parameter cr i is an internal stress which 
becomes zero at high temperatures, and S is a func- 
tional relationship between m, n, strain hardening and 
recovery, cr~ and ~1 are the stress and strain rate, 
respectively, at the beginning of the relaxation. Equa- 
tion 1 can give either concave upward, linear or 
concave downward curves. 

The state variable approach proposed by Hart  [4, 
5] has been used by several authors [6-13-] to describe 
the load relaxation behaviour of type 304 and type 316 
stainless steels. Hart's phenomenological model essen- 
tially consists of two parallel branches. At high homo- 
logous temperatures, the constant hardness log or- 

log ~ stress relaxation curves are described by 

ln(o*/cy) = (c*/r ~ (2) 

where c~* is the hardness, X is a temperature-inde- 
pendent parameter, and ~* depends on temperature, 
heat treatment and deformation. Equation 2 describes 
concave downward log cy-log k curves, and the rate of 
deformation in the region where this equation applies 
is assumed to be controlled by diffusive processes. 

The branch which is important at low homologous 
temperature gives the constant hardness log or-log 
curves described by 

= Q ( o f / G )  M (3) 

where G is the shear modulus, Q is a rate parameter 
and is moderately temperature dependent compared 
with ~*, Cry is an effective stress and is (~-cy*) in the 
region where deformation processes represented by 
Equation 2 are not important, and M is a constant. 
Equation 3 leads to concave upward or linear log 
c~-log k curves, and it is assumed to result from 
dislocation glide controlled processes. 

In the intermediate temperature range, deformation 
processes represented by both Equations 2 and 3 will 
be important. In this range, both branches of the 
phenomenological model will be operative such that 

cI = c r*exp[- (~*/ / ; )~]  + G ( k / Q )  1/M. (4) 

Most of the data were obtained at room temperature 
and have been interpreted in terms of Equation 3. 
Moreover, it was found that the parameters of Equa- 
tion 3 were dependent on the prior thermomechani- 
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cal treatment given to the specimens [6, 9]. The 
measurements in type-316 stainless steel were ex- 
tended to higher temperatures [11, 13] and could be 
described by Equation 4 up to a temperature of the 
order of 773 K. Microstructural changes were ob- 
served above this temperature. A grain-boundary slid- 
ing contribution to the relaxation curves was observed 
at 873 K in highly stabilized type-316 stainless steel 
[13]. This contribution was described by an equation 
similar to Equation 2 with L = 0.32. 

Anciaux [14]  has published load relaxation data 
near 563 K for three austenitic stainless steels. The 
tests were conducted in a strain-controlled servo- 
hydraulic test machine near the yield point strain 
levels. For  stainless steel type AISI 304, Anciaux 
reported the log or-log k curves, at different strain 
levels, for mill-annealed specimens. The shape of the 
log or-log ~ stress relaxation curves was found to 
depend on the strain level, but no explanation was 
given by the author for this behaviour. Povolo and 
Tinivella [15], however, have interpreted these data in 
terms of a general expression that describes the stress 
relaxation behaviour as a thermally activated process 

= ~1 e x p [ -  AG((r)/kT] (5) 

where gl is a general pre-exponential factor, T is the 
absolute temperature, k is Boltzmann's constant, AG is 
the change in free enthalpy and ~ is the effective stress, 
that is, ~ = ~ - cy i. In different regions of the stress 
against strain-rate curves, Equation 5 was reduced to 
particular expressions like Equations 2 and 3, which 
allow a determination of the physical parameters in- 
volved, such as internal stress, activation volume, etc. 

Povolo and Tinivella [16] have reported stress 
relaxation data, in bending and at 773 K, of type 304 
stainless steel. Four  different thermomechanical treat- 
ments were given to the specimens prior to the stress 
relaxation experiments, and the measurements were 
extended up to times of the order of 450 h at various 
initial stresses. The shapes of the log g - log ~ curves 
were found tq be strongly dependent on the previous 
thermomechanical treatment, and were interpreted in 
terms of a stress-partitioned power law, of the type of 
Equation 3, with either a constant or a variable 
internal stress. In fact, this stress-partitioned power 
law and Equation 2 are particular cases of Equation 5. 
Moreover, several activation parameters were ob- 
tained from the stress relaxation curves. 

It is the purpose of this paper to present additional 
data on the stress relaxation, in bending and at 773 
and 823 K, of type 304 stainless steel. The measure- 
ments at 773 K were extended up to times of the order 
of 180 h, in specimens with new thermomechanical 
treatments, and those at 823 K were extended up to 
times of the order of 3000 h. Finally, the influence of 
the different treatments on the shape of the stress 
relaxation curves will be discussed and the different 
activation parameters will be analysed in detail. 

2. Experimental procedure 
2.1. Specimen preparation 
The original material was supplied in the form of a 
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T A B L E  I Thermal treatments given to specimens and micro- 
hardness (prior to stress relaxation tests) and average grain size 
(after stress relaxation tests) 

Thermal treatment Name Microhardness Grain size 
(Hv) (gm) 

As-received 0 182 22 
0 + 1  at 1323 K in argon 
and oil-quenched A 180 90 
0 + 1 h at 1255 K in argon 
and oil-quenched B 164 53 
0 + 1 h at 1172 K in argon 
and oil-quenched C 179 22 
0 + A + 1 6 h a t 9 9 3 K i n  
vacuum and air cooled D 170 94 

sheet 0.52 mm thick and in mill-annealed conditions. 
The typical composition of the alloy is given elsewhere 
[16]. The specimens were prepared with the axis 
parallel to the roiling direction and, in addition to the 
as-received condition, four different thermal treat- 
ments were used prior to the stress relaxation meas- 
urements. In fact, the specimens (8 mm wide and 
98 mm long) were carefully cleaned and sealed into 
fused silica tubes with argon atmosphere. These tubes 
were heated for 1 h at 1323, 1255 or 1172K, and 
dropped into oil for a quenching treatment. Part of the 
specimens, heated at 1323 K, were heat-treated into a 
fused silica tube connected to a high-vacuum equip- 
ment, at 993 K for 16 h, and subsequently cooled by 
removing the furnace (air cooling). These different 
thermal treatments are named 0, A, B, C and D, 
respectively, as indicated in Table I. The microhard- 
ness of each specimen, obtained after the different 
thermal treatments, and the average grain size, as 
measured after the stress relaxation tests, are indicated 
in the same table. 

2.2. Stress relaxation measurements 
The specimens, originally flat, were bent into stainless 
steel holders with radii which gave maximum outer 
fibre stresses, under elastic bending, between approx- 
imately 120 and 320 MPa. The holders are similar to 
those described by Fraser et al. [173. The holders with 
the specimens were inserted into a furnace either at 
773 or 823 K, and extracted periodically for curvature 
measurements. The temperature was controlled with 
thermocouples attached to the holder near the speci- 
mens and the fluctuations were of the order of + 1 K. 
The radii of curvature, Rj, after releasing the speci- 
mens from the holders, were determined by measuring 
the coordinates of different points with respect to a 
reference plane, in the arc of circumference determined 
by the curved beam, and feeding the data to a com- 
puter programme which calculated the average radius 
by a least square fitting. Duplicate specimens were 
used in order to observe the dispersion between equi- 
valent specimens in the results. The stresses at the 
surface of the beam, Go, before unloading were deter- 
mined by using the relationship [18, 19] 

cr = 2/3cr b + E/3(drrb/dZ ) (6) 



where 
c% = E h / 2 ( 1 / R  i - l / R )  (7) 

is the measured stress change at the surface of the bent 
specimen, after releasing it from the holder; h is the 
thickness of the specimen; R is the radius of curvature 
of the holder; and E is Young's modulus (168 GPa at 
773 K and 163 GPa at 823 K [20]). The initial stress, 
Y~, at the surface of the bent specimen was not obtained 
from the relationship ]C = E h / 2 R  since some plastic 
deformation was observed in the specimens during 
bending into the holders. In this situation, it was more 
reliable to take for ~ the value of ~b obtained from 
each ~b against-time curve by an extrapolation to the 
origin. 

3.  Results 
Figs 1 and 2 show the measured stress change at the 
surface of the specimens as a function of time, at 773 
and 823 K, respectively. The curves corresponding to 
the different types of specimens and the initial stresses 
employed are also indicated in these figures. Each 
curve corresponds to the average value obtained from 
two specimens and the data have been disposed in the 
way shown in Figs 1 and 2 to avoid superpositions. 
The stresses, o, at the surface of the specimens before 
unloading, which correspond to the values that would 
be obtained in the same material under initial uniaxial 
stresses given by Y~, can be calculated by using Equa- 
tion 6. In fact, average curves were drawn through the 
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Figure 1 Measured stress change at the surface as a function of time 
at 773 K. (a) Full symbols, type A; open symbols, type O specimens. 
(b) Open symbols, type B; full symbols, type D. (c) Type C. Corres-. 
ponding initial stresses are given on each curve. 
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Figure 2 Measured stress at the surface as a function of time at 
823 K. (a) Type C; (b) full symbols, type B; open symbols, type D 
specimens. Corresponding initial stresses are given on each curve. 

100 

- -  5O 
a .  

0 

100  

50  

" " A(104)  

- B l 7 5 )  

-A(X= 52MPa) 

(a) 
I I I i 

( b l  

o c 1 2 3 ~ ~  . . . . . .  c(157~ 

P_ (11~ )  ~ ~  . \ .  

O ( E :  8 0 M P a  

; I --' I 

3 4 5 6 7 

10g t (s) 

Figure 3 Stress at surface of specimen before unloading as a func- 
tion of time at 773 K. (a) Type of specimen and the initial stress are 
indicated on each curve. (b) Full curves correspond to type C; 
broken curves to type O specimens. 

data points of Figs 1 and 2, and o was calculated from 
these curves. The o against log t curves obtained in 
this way are shown in Figs 3 and 4. Once cr is known, 
the stress against strain-rate curves can be obtained by 
differentiating the curves of Figs 3 and 4, as 
k = - i r / E .  The log stress against log strain-rate re- 
laxation curves are shown in Fig. 5 for 773 K, and in 
Fig. 6 for 823 K. It is seen that the shape of these 
curves depends on the thermal treatment and on the 
testing temperature. Furthermore, there are mainly, 
three types of curves: concave upward, concave down- 
ward, or mixed. Thus a procedure described in detail 
elsewhere [15, 16, 21] will be used to describe the log dr 
- l o g  k curves of Figs 5 and 6. Briefly, it will Ize 

assumed that these curves are described by Equation 
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Figure 4 Stress at surface of specimen before unloading as a func- 
tion of time at 823 K. Ca) Full curves correspond to type C; broken 
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Figure 6 Stress against rate relaxation curves, at 823 K, for speci- 
mens shown in Fig. 4. (a) Broken curves, type B; full curves, type C 
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Figure 5 Stress against strain rate relaxation curves, at 773 K, for 
specimens shown in Fig. 3. (a) Broken curves, type A; full curves, 
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Type B. Corresponding initial stresses indicated on each curve. 

5, written as 

= ~ o e x p [ -  AGm(O) /kT]  (8) 

where AG"(~) gives the contribution to the change in 
the free enthalpy due to the applied stress. 
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with 

Furthermore, the Johnston-Gilman [22] equation 

\er~ / es_ G i,~oo 1] (9) 

~J-G = qbpbvo (10) 

where qb is an orientation factor, p is the mobile 
dislocation density, b is the Burgers vector and %, ~o 
and m* are material constants, can be written in the 
form of Equation 8 if 

A G m ( ~ ) ] j _ G  = m*kTln((r/ero) (11) 

and 
go --- d~pbvo = ~j_~ (12) 

It should be pointed out that Equation 9 is equivalent 
to Equation 3. Moreover, Equation 2 can be written in 
the form of Equation 8 if 

AG"(~) [ n - (~LT-) In [ln(e~*/e~)] (13) 

and 
go = ~* (14) 

Equation 9 reduces to equation 2 if the internal stress 
changes according to the law 

~ i  = c - -  ~ o [ l n ( ~ * / ~ ) ] - l / ; ~ m *  (15) 

for G < e~* 
The activation volume, defined by 

V* - OAGm(~)/~9~[r (16) 

in the case of the Johnston-Gilman equation reduces 
t o  

V* = k T m * / O  (17) 



and, in the case of Hart's equation (Equation 2) to 

m * k T  
V* - [ln(13"/13)] l/)~m* (18 )  

13 0 

Then, when the representation of log ~ against log 
curves is linear or shows upward curvature, Equation 8 
reduces to Equation 9 and the data are described by 
the Johnston-Gilman equation. If the curves show a 
downward curvature, Equation 8 reduces to Equation 
2, and the data are described by Hart's equation for 
high homologous temperatures, or by the equivalent, 
the Johnston-Gilman equation with an internal stress 
that varies with the applied stress according to Equa- 
tion 15. Finally, in the case of mixed curvature, there 
will be a transition region where the experimental 
curve changes curvature, that is, where the data can be 
described by both Equations 2 and 9. Furthermore, in 

the transition region 

AGm(6)b_G - -  AG"(~r)In (19) 

~ = ~s-G (20) 

and on equating Equations 17 and 18 it is easy to 
show that at the critical stress, 13c, that 

o o = (o~ - -  1 3 i ) [ l n ( o * / ~ c ) ]  t/z'n* (21) 

where ~ is the stress at which the change in curvature 
occurs. The detailed fitting procedure of the experi- 
mental log 13 against log ~ curves of Figs 5 and 6, to the 
equations presented, is described elsewhere [15, 16]. 
The different parameters, obtained by using a com- 
puter programme for linear regression analysis with 
Marquardt's method, are given in Table II. The inter- 
nal stresses for all the curves of Figs 5 and 6 are shown 
in Fig. 7 as a function of the effective stress. The 

T A B L E  I I  Pa ramete r s  ob ta ined  by fi t t ing log cr l ogk  curves of Figs 5 and  6 to ei ther  Equa t ion  2 or Equa t ion  9 

Specimen Temper-  Z crl ks- a/(Go)"* m* ;L or* k n % ere ~s - G 
type a ture  (MPa)  (MPa)  ( s - l M P a  -m*) (MPa)  (s -1)  (MPa)  (MPa)  (s -1) 

(K) 

0 773 157 124 4.2 x 10 -12 3.8 0.22 123 2.5 x 10 11 

131 98 6.0 x 10 -1 I  2.6 0.19 100 2.5 x 10 11 

112 82 7.3 x 10 T M  2.5 0.23 81 2.1 x 10 la 
A 773 104 84 1.3 x 10 T M  2.0 0.7 105 4.9 x 10 -11 

52 43 3.5 x 10 -11 2.0 

B 773 113 93 4.2 x 10 -12 2.0 
75 60 1.2 x 10 -11 1.6 0.23 84 3.5 x 10 -11 

B 823 88 23 1.2 x 10 -18 4.8 0.47 96 9.5 x 10 -12 
67 20 4.2 x 10 -17 4.2 0.52 67 6.0 x 10 -12 

C 773 136 0.27 148 2.4 x 10 -12 
123 0.24 133 1.6 x 10 -12 

80 70 1.3 x 10 9 0.42 0.49 76 1.4 x 10 -12 

C 823 133 0.18 208 2.0 x 10 -1~ 
100 0.22 128 5.5 x 10 -11 

65 0.20 88 5.3 x 10 -11 

D 773 128 96 4.5 x 10 -12 2.3 

93 69 3.1 x 10 -12 2.6 

D 823 121 0.22 134 8.8 x 10 -12 

105 0.21 113 1.8 x 10 -12 

71 0.20 77 4.1 x 10 13 
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corresponding activation volumes, calculated by using 
either Equation 17 or 18 are shown in Fig. 8 as V*/b 3 
against O. Finally, plots of AG'(O) /kT  against ~ are 
shown in Fig. 9. These curves can be obtained by using 
either Equation 11 or 13, and the parameters given in 
Table II. The stress dependence of %, shown in Fig. 7, 
should be taken into account when calculating 
AGm(#) with Equation 11. A similar calculation for 
the rest of the curves of Figs 5 and 6 is not possible 
since ~o cannot be determined. 

4. D iscuss ion  
As pointed out in the introduction, Equation 1 can 
give either concave upward, linear or concave down- 
ward curves, but this equation involves too many 
parameters, which are very difficult to determine from 
the experimental curves [16]. In addition, it is not easy 
to give a precise physical meaning to each of the 
parameters in terms of thermally activated dislocation 
motion. A similar situation is encountered for Equa- 
tion 4. The approach used in this paper, on the other 
hand, leads to parameters with more physical signifi- 
cance. Table II, however, shows that there is no clear 
correlation between the stress relaxation behaviour 
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and the thermomechanical treatment given to the 
specimens prior to the stress relaxation experiments. 
This is also inferred from an observation of the stress 
relaxation curves given in Figs 5 and 6. To illustrate 
this point, Figs 10 and 11 compare the log cy log 
curves obtained at 773 and 823 K, respectively, with 
similar initial stresses (of the order of 100 MPa) and in 
specimens with different thermomechanical treat- 
ments. A*, B*, C* and D* refer to data reported in 
another publication [16] and correspond to the fol- 
lowing treatments: A*, as-received + 50% cold-rolled; 
B*, A* + 16 h at 993 K in vacuum and air-cooled; C*, 
A* + 1 h at 1172 K in argon and oil-quenched + 16 h 
at 993 K in vacuum and air-cooled; D*, A* + 1 h at 
1201 K in argon and oil-quenched + 16 h at 993 K in 
vacuum and air-cooled. It is evident from Fig. 10 that, 
except for the cold-worked specimen (indicated with 
A*) where a drastic difference in the stress relaxation 
behaviour is found with respect to the other treat- 
ments, no substantial differences are encountered be- 
tween the rest of the specimens. Furthermore, it can be 
observed, also from Fig. 10, that similar results are 
obtained after the different thermal treatments, on 
starting from the cold-worked or from the mill-an- 
nealed condition (as received). 
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An interesting point is the stress dependence of the 
initial stresses shown in Fig. 7. When the relaxation 
curves are concave upward at high stresses and con- 
cave downward at low stresses, the internal stress is 
constant at first and then decreases as cr is reduced. 
This behaviour was also encountered for the load 
relaxation, near 563 K, of mill-annealed stainless steel 
type AISI 304 [15]. As shown in Fig. 7, however, a 
different situation is found for specimens type A and 
type B at 773 K, and for specimens type B at 823 K. In 
fact, according to Fig. 7, in these specimens and for 
some initial stresses, the internal stress decreases as the 
applied stress increases�9 This is due to the fact that the 
corresponding log or-log ~ curves show upward 
concavity at the lowest strain rate, as shown by Figs 5 
and 6. 

No specific physical model was included in the 
fitting procedure used in the paper, and the activation 
parameters obtained represent average values for the 
material. The large activation volumes involved, as 
shown in Fig. 8, and the low values for m indicate that 
the relaxation process is mainly due to dislocation 
glide controlled by the overcoming of individual sol- 
ute atoms or small precipitates. In addition, thermal 
activation is important, since AG m (6") is not much 
higher than kT, as shown in Fig. 9. A possible physical 
model that can be used to explain the shapes of the 

stress-relaxation curves and the stress dependence of 
the internal stresses is the occurrence of dynamic 
strain ageing during stress relaxation. If this is the 
case, it might be assumed that the effective stress is 
composed of three terms [231 

6" = ~ - % -  % (22) 

where ~i is an internal stress produced by the dis- 
location structure which does not change during stress 
relaxation; and % the stress generated by the impu- 
rities segregated to the moving dislocation, c~ can be 
expressed by 

O s  = (Ym { 1  - -  exp [ - (~s/~) 2/(n+2)] } 

where 

and 

~s = (Co/Cm) (n+2)/2 ~  

(23) 

(24) 

Cr m = n W M c m / b  3 (25) 

W~ t is the binding energy between the solute atom and 
the dislocation, n depends on the characteristic of the 
interaction between the solute atom and the dislo- 
cation, D is the diffusion coefficient for the impurity, c o 
is the average concentration of impurities in the crys- 
tal, Cm is the limiting value of the concentration of 
impurities on the dislocation and ~ a  is the average 
distance between the obstacles interacting with the 
moving dislocation. 

If the stress-relaxation process is described by 
Equation 9, with an effective stress given by Equation 
22, then 

k - -  e J - G  [-(~ - -  ~ i  - -  ~ m {  1 

- exp[  - (es/g)2/"+2] }) m~ ] (26) 

which, on introducing 
2 

- a (27)  
m + 2  

and 

ga ~ "' (28) m* - -  E,j _ G 
i f0  

can be written as 

= ~ J -  o { [ o  - (o i  + %) 
+ ~ e x p [  - (k,/k)"]]m*}. (29) 

Equation 29 has two limiting forms: 

�9 t O" m* ' �9 
= S J - G  E - -  (O ' i  -~- O ' m ) ]  (Ss  >~ ~)  ( 3 0 )  

and 

= < , _ G [ o  - -  o i ]  m~ (g > ~ )  (31)  

Then, at high strain rates (high stresses) the log o- log 
g curves should be described by the Johnston-Gilman 
equation with an internal stress c h and, at low strain 
rates, with the same equation with an internal stress % 
+ ~m" This is illustrated schematically in Fig. 12, 

where the limiting values are indicated by the dashed 
curves and the expected tog d- log g trajectory is 
indicated by the full curve. The experimental curves of 
Figs 5 and 6 do in fact have the shape predicted by 
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Figure 12 Schematic stress relaxation behaviour predicted by 
Equation 29. Broken curves represent limiting values. 

Equation 29. The problem is that they are not ex- 
tended enough to use the limiting values for a real 
determination of o-i, o-m and m*. Furthermore, with 
the fitting procedure employed the plateau of the 
curve of Fig. 12 might have been used to determine o-* 
and o-i, leading to large errors, depending on how 
much o-m differs from o-i. Similar considerations apply 
to the value of m* obtained experimentally, through 
the fitting procedure used in this paper. 

Equation 29 can explain, at least qualitatively, the 
stress dependence of the measured internal stress, 
shown in Fig. 7. For  specimens B (67), B(88), A(104) 
and B(52), a change in curvature was observed at the 
lowest strain rates (stresses) and so the internal stress 
should start to decrease with the applied stress, that is, 
it should change from o-i "t- o-m to o-i, according to Fig. 
12. In the rest of the curves in Fig. 7, as the value of % 
was attributed either to the plateau or to the limiting 
value of the lower broken curve of Fig. 12, when only 
concave, upward curves were observed, the measured 
internal stress should remain constant or decrease as 
the applied stress is reduced. The experimental log 
o q o g  ~ curves are too short to obtain all the para- 
meters needed for Equation 26. Some consideration 
should be given, however, to the parameters given in 
Table II. It might be assumed that curves A(52), A(52), 
D(128), D(93), B(113) and B(75), where the limiting 
stress at low strain rates is measured, give reliable 
values for m*. In fact, according to Table II these 
curves give m* = 2 for A(104) and A(52); m* = 2 for 
B(113); and m* _~ 2.4 for D(128) and D(93). Thus, it is 
reasonable to assume that m* - 2 for all the curves in 
Fig. 5. Even if the experimental curves do not extend 
enough to obtain all the parameters of Equation 29, 
some estimates can be made to show that this equa- 
tion might describe the log o--log ~ curves. In fact, on 
differentiating Equation 29 with respect to ~ it can be 
shown that 

k,j_~ j = m o- d~ogk + am* e-(eJO~ 

which, combined with Equation 29, leads to 

[ *dl~ 1 o- 1 -  m ~ o g g  = (o-i -~ EYm) 
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For m *  = 2 a n d  n = 2 [ 2 3 ] ,  Equation 33 reduces to 

l d logo- ]  
o- 1 2d~oog~J = ( o - i - t -  O'm) 

+ 1 / o-m e (gs/e)l~[(~) 1/2 - (34) 

Then, for a = ~s, Equation 34 gives 
d log o- 

o i l -  2 ~ 1  = (o-i+ o-m) (35) 

Furthermore, if the experimental curve was fitted to 
Hart's equation in the region ~ -~ as, the derivative is 
described by 

d log o- 
- Xln(o-*/o-) (36) 

dloga 

and Equation 36 converts to 

o-1[ 1 - 2 M n ( o - * / o 0 ]  = (c~i + o-m) (37) 

where o-1 is the stress at which a = ~s- The values of o-i 
reported in Table II do not necessarily coincide with 
o-i or o-i ~- o-m included in Equation 37, as the fitting 
procedure might lead to errors. An observation of 
Table II, however, shows that the ratio %/E  is 
constant for each specimen and it may be assumed that 
(% + o-m) = KE. For  specimen B(75), K = 0.82, 
X=0.23,  o - * = 8 4 M P a ,  ~ * = 3 . 5 x 1 0 - 1 1 s  -1, (% 
+ o-m) = KE -- 61.5 MPa, and Equation 37 leads to 

o-z = 68.1 MPa. Once o-~ is known, a s can be calcu- 
lated by using Equation 2, leading to 

as = 3.1x 10-Ss -1 (38) 

This is a reasonable value since it is located well above 
the saturation at (o-~ + o-m) at low strain rates, that is, 
the condition ~s >> ~ is fulfilled. In summary, it can be 
concluded that Equation 29 describes, not only quali- 
tatively but also quantitatively, the experimental log 
o- log k trajectories. Data in a more extended range 
are needed in order to establish a correlation between 
the parameters given in Table II and the physical 
parameters involved in Equation 29. This is also valid 
for an evaluation of the influence of temperature on 
the relaxation behaviour, as no clear correlation can 
be established between the data at 773 K and those at 
823 K. From an observation of Figs 7 and 9, it can 
only be concluded that the internal stresses and the 
activation enthalpies are lower at 823 K, indicating an 
acceleration of the relaxation process on increasing 
th e temperature. 

Finally, a systematic and slight increases in micro- 
hardness was observed after the stress relaxation ex- 
periments, which might be an additional confirmation 
that strain-ageing phenomena are occurring. 

5. Conclusions 
Data on stress relaxation in bending of type AISI 304 
stainless steel, both at 773 and 823 K, are presented. 
Specimens with different thermal treatments prior to 



the stress relaxation tests, and various initial stresses, 
were employed. The log stress against log strain rate 
curves were fitted to two constitutive equations, one 
for upward and the other one for downward con- 
cavity. Several parameters can be obtained from the 
experimental curves through this fitting procedure. 

No clear correlation can be established between the 
thermal treatments and the stress relaxation behavi- 
our, due to the influence of dynamic strain ageing. A 
physical model for the description of thermally activ- 
ated motion of dislocations interacting with moving 
impurities is presented, and it is shown that this model 
might describe, both qualitatively and quantitatively, 
the observed stress relaxation behaviour. 
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